Tampilkan postingan dengan label Materi Matematika. Tampilkan semua postingan
Tampilkan postingan dengan label Materi Matematika. Tampilkan semua postingan

Minggu, 23 Desember 2012

Materi Matematika ~ Lingkaran

Lingkaran

1. Unsur-Unsur Lingkaran

Ada beberapa bagian lingkaran yang termasuk dalam unsur-unsur sebuah lingkaran di antaranya titik pusat, jari-jari, diameter, busur, tali busur, tembereng, juring, dan apotema. Untuk lebih jelasnya, perhatikan uraian berikut.
a. Titik Pusat
Titik pusat lingkaran adalah titik yang terletak di tengah-tengah lingkaran. Pada Gambar 6.3 , titik O merupakan titik pusat lingkaran, dengan demikian, lingkaran tersebut dinamakan lingkaran O.
b. Jari-Jari (r)
Seperti yang telah dijelaskan sebelumnya, jari-jari lingkaran adalah garis dari titik pusat lingkaran ke lengkungan lingkaran. Pada Gambar 6.3 , jari-jari lingkaran ditunjukkan oleh garis OA, OB, dan OC.
c. Diameter (d)
Diameter adalah garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat. Garis AB pada lingkaran O merupakan diameter lingkaran tersebut. Perhatikan bahwa AB = AO + OB. Dengan kata lain, nilai diameter merupakan dua kali nilai jari-jarinya, ditulis bahwa d = 2r.
d. Busur
Dalam lingkaran, busur lingkaran merupakan garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang di lengkungan tersebut. Pada Gambar 6.3 , garis lengkung AC (ditulis AC (), garis lengkung CB (ditulis CB ), dan garis lengkung AB (ditulis AB ) merupakan busur lingkaran O.
e. Tali Busur
Tali busur lingkaran adalah garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran. Berbeda dengan diameter, tali busur tidak melalui titik pusat lingkaran O. Tali busur lingkaran tersebut ditunjukkan oleh garis lurus AC yang tidak melalui titik pusat pada Gambar 6.3.
f. Tembereng
Tembereng adalah luas daerah dalam lingkaran yang dibatasi oleh busur dan tali busur. Pada Gambar 6.3 , tembereng ditunjukkan oleh daerah yang diarsir dan dibatasi oleh busur AC dan tali busur AC.
g. Juring
Juring lingkaran adalah luas daerah dalam lingkaran yang dibatasi oleh dua buah jari-jari lingkaran dan sebuah busur yang diapit oleh kedua jari-jari lingkaran tersebut. Pada Gambar 6.3 , juring lingkaran ditunjukkan oleh daerah yang diarsir yang dibatasi oleh jari-jari OC dan OB serta busur BC, dinamakan juring BOC.
h. Apotema
Pada sebuah lingkaran, apotema merupakan garis yang menghubungkan titik pusat lingkaran dengan tali busur lingkaran tersebut. Garis yang dibentuk bersifat tegak lurus dengan tali busur. Coba perhatikan Gambar 6.3 secara seksama. Garis OE merupakan garis apotema pada lingkaran O. Agar kamu lebih memahami materi tentang pengertian dan unsur-unsur
lingkaran, coba pelajari Contoh Soal 6.1 berikut ini.

Materi Matematika ~ Teorema Phytagoras

Teorema Pythagoras

A. TEOREMA PYTHAGORAS

1. Luas Persegi dan Luas Segitiga Siku-Siku

Perhatikan Gambar 5.1.
Pada gambar tersebut tampak sebuah persegi ABCD yang panjang sisinya s satuan panjang.
Luas persegi ABCD = sisi x sisi

Materi Matematika ~ Persamaan Linear

 Sistem Persamaan Linear 

A. Pengertian SPLDV
Untuk memahami pengertian dan konsep dasar SPLDV, ada baiknya mengulang kembali materi tentang persamaan linear satu variabel. Pelajarilah uraian berikut secara saksama.
1. Persamaan Linear Satu Variabel 
Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut.


Bentuk-bentuk persamaan tersebut memiliki satu variabel yang belum diketahui nilainya. Bentuk persamaan seperti inilah yang dimaksud dengan linear satu variabel. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.1 secara seksama.





Seperti yang telah dipelajari sebelumnya, untuk penyelesaian dari persamaan linear satu variabel dapat digunakan beberapa cara. Salah satu di antaranya dengan sifat kesamaan. Perhatikan uraian persamaan berikut.


Materi Matematika ~ Relasi dan Fungsi

Relasi dan Fungsi 
 A. RELASI. 
1. Perkalian Himpunan (Produk Cartesius).
Misalnya A = {a, b, c} dan B = {1, 2, 3} maka:

A x B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}.
B x A = {(1, a), (2, a), (3, a), (1, b), (2, b), (3, b), (1, c), (2, c), (3, c)}.
A x B dibaca “A cross B”.
B x A dibaca “B cross A”.
==================================================================
2. Pengertian Relasi.
Misalnya dalam suatu wawancara tentang kegemaran olahraga beberapa anak kelas 8F diperoleh data sebagai berikut:
 Ivonna menggemari olahraga renang
 Rizki menggemari olahraga tenis
 Alina menggemari olahraga renang
 Nana menggemari olahraga senam
 Gita menggemari olahraga renang
Dari data di atas dapat dibentuk 2 himpunan yaitu:
1. Himpunan bagian siswa kelas 8F
A = {Ivonna, Rizki, Alina, Nana, Gita}
2. Himpunan jenis olahraga
B = {renang, tenis, senam}
Antara himpunan A dan B terdapat hubungan/relasi yaitu “menggemari olahraga”.
Jadi:
Himpunan A dan B yang tidak kosong dikatakan mempunyai relasi (hubungan) jika ada anggota himpunan A yang berpasangan dengan anggota himpunan B.

Contoh:
Diketahui A = {4, 6, 8,10} dan B = {2, 3, 4, 5}
a. Tentukan relasi yang mungkin dari himpunan A ke himpunan B!
b. Tentukan relasi yang mungkin dari himpunan B ke himpunan A!
Jawab:
a. Dari himpunan A dan B didapat:
4 = dua kali 2
6 = dua kali 3
8 = dua kali 4
10 = dua kali 5
Jadi relasi yang mungkin dari A ke B adalah “dua kali dari”.

b. Dari himpunan B ke himpunan A didapat:
2 = setengah dari 4
3 = setengah dari 6
4 = setengah dari 8
5 = setengah dari 10
Jadi relasi yang mungkin dari B ke A adalah “setengah dari”